If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2-7b-14=0
a = 4; b = -7; c = -14;
Δ = b2-4ac
Δ = -72-4·4·(-14)
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{273}}{2*4}=\frac{7-\sqrt{273}}{8} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{273}}{2*4}=\frac{7+\sqrt{273}}{8} $
| 2^|4x−1|=128 | | 4e=42.8 | | 2^4x+1=128 | | .8x+16=6x | | 70=-5(x^2-4x-10) | | p^2+11=-8p | | 4,140+2,300+x)+2,300+x)+x=1600 | | 6x+4=2+x+7x | | 5a-3=15a-11÷2 | | 4,14+2,300+x)+2,300+x)+x=1600 | | 16v+7=7 | | k^2+48=-16k | | 43 x+2=83 x−4 | | 2x+3÷9=3 | | r^2-10r+22=6 | | 2x+5=15;5 | | -50=-5x^2+20x | | x3.7= 1.8 | | 2q−3=15 | | -4n+7=2n=1 | | x+x=-20 | | 6x-9x-4=4x-2 | | 3j−14=1 | | 2x+26=1+25 | | 41/4x=85 | | 4(5b-3))=268 | | 15f^2–17f+2=0 | | 120+8x/12x=x | | 14r=350 | | a/8=3/12 | | 11.71+x=12.99 | | 15/2.5=x/4 |